Data-Driven Nonzero-Sum Game for Discrete-Time Systems Using Off-Policy Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning
In this paper we present a new way of predicting the performance of a reinforcement learning policy given historical data that may have been generated by a different policy. The ability to evaluate a policy from historical data is important for applications where the deployment of a bad policy can be dangerous or costly. We show empirically that our algorithm produces estimates that often have ...
متن کاملData-Based Reinforcement Learning Algorithm with Experience Replay for Solving Constrained Nonzero-Sum Differential Games
In this paper a partially model-free reinforcement learning (RL) algorithm based on experience replay is developed for finding online the Nash equilibrium solution of the multi-player nonzero-sum (NZS) differential games. In order to avoid the performance degradation or even system instability, the amplitude limitation on the control inputs is considered in the design procedure. The proposed al...
متن کاملAn Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...
متن کاملThe Multi-player Nonzero-sum Dynkin Game in Continuous Time
In this paper we study the N-player nonzero-sumDynkin game (N ≥ 3) in continuous time, which is a non-cooperative game where the strategies are stopping times. We show that the game has a Nash equilibrium point for general payoff processes. AMS Classification subjects: 91A15 ; 91A10 ; 91A30 ; 60G40 ; 91A60.
متن کاملOn-Policy vs. Off-Policy Updates for Deep Reinforcement Learning
Temporal-difference-based deep-reinforcement learning methods have typically been driven by off-policy, bootstrap Q-Learning updates. In this paper, we investigate the effects of using on-policy, Monte Carlo updates. Our empirical results show that for the DDPG algorithm in a continuous action space, mixing on-policy and off-policy update targets exhibits superior performance and stability comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2019.2960064